Query & analyze#
import lamindb as ln
import lnschema_bionty as lb
lb.settings.species = "human"
💡 loaded instance: testuser1/test-flow (lamindb 0.54.1)
ln.track()
💡 notebook imports: anndata==0.9.2 lamindb==0.54.1 lnschema_bionty==0.31.2 scanpy==1.9.5
💡 Transform(id='wukchS8V976Uz8', name='Query & analyze', short_name='facs2', version='0', type=notebook, updated_at=2023-09-26 10:02:45, created_by_id='DzTjkKse')
💡 Run(id='13ARiS3AbtQpdKXb739B', run_at=2023-09-26 10:02:45, transform_id='wukchS8V976Uz8', created_by_id='DzTjkKse')
Inspect the CellMarker registry #
Inspect your aggregated cell marker registry as a DataFrame
:
lb.CellMarker.filter().df().head()
name | synonyms | gene_symbol | ncbi_gene_id | uniprotkb_id | species_id | bionty_source_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|
id | |||||||||
c3dZKHFOdllB | CD33 | CD33 | 945 | P20138 | uHJU | CgXV | 2023-09-26 10:02:27 | DzTjkKse | |
fpPkjlGv15C9 | Ccr6 | CCR6 | 1235 | P51684 | uHJU | CgXV | 2023-09-26 10:02:27 | DzTjkKse | |
YA5Ezh6SAy10 | DNA1 | None | None | None | uHJU | CgXV | 2023-09-26 10:02:27 | DzTjkKse | |
agQD0dEzuoNA | CXCR3 | CXCR3 | 2833 | P49682 | uHJU | CgXV | 2023-09-26 10:02:27 | DzTjkKse | |
N2F6Qv9CxJch | CD11B | ITGAM | 3684 | P11215 | uHJU | CgXV | 2023-09-26 10:02:27 | DzTjkKse |
Search for a marker (synonyms aware):
lb.CellMarker.search("PD-1").head(2)
id | synonyms | __ratio__ | |
---|---|---|---|
name | |||
PD1 | 2VeZenLi2dj5 | PID1|PD-1|PD 1 | 100.0 |
Cd14 | roEbL8zuLC5k | 50.0 |
Look up markers with auto-complete:
markers = lb.CellMarker.lookup()
markers.cd14
CellMarker(id='roEbL8zuLC5k', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2023-09-26 10:02:27, species_id='uHJU', bionty_source_id='CgXV', created_by_id='DzTjkKse')
Query files by markers #
Query panels and datasets based on markers, e.g., which datasets have 'CD14'
in the flow panel:
panels_with_cd14 = ln.FeatureSet.filter(cell_markers=markers.cd14).all()
ln.File.filter(feature_sets__in=panels_with_cd14).df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
gfsTnxaVBSGvvuNky0Mm | oieE0n5L | None | .h5ad | AnnData | Flow cytometry file 2 | None | 6837528 | t6plg-pXZMxqmQN9naNeuw | md5 | SmQmhrhigFPLz8 | b13zNeaKscxptfaMtKWi | None | 2023-09-26 10:02:41 | DzTjkKse |
6iw33IVOetRxoZOczFal | oieE0n5L | None | .h5ad | AnnData | Alpert19 | None | 33369696 | Piw2n0vdnoNoAV7ZxgsW-g | md5 | OWuTtS4SAponz8 | HDsxREvsdSEFMCUgXjYW | None | 2023-09-26 10:02:32 | DzTjkKse |
Access registries:
features = ln.Feature.lookup()
efs = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
Find shared cell markers between two files:
files = ln.File.filter(feature_sets__in=panels_with_cd14, species=species.human).list()
file1, file2 = files[0], files[1]
shared_markers = file1.features["var"] & file2.features["var"]
shared_markers.list("name")
['CD8', 'Cd19', 'CD3', 'CD127', 'CD57', 'CD28', 'Cd14', 'CD27', 'Ccr7', 'Cd4']
Concatenate & analyze queried files #
Load files into memory and concatenate:
adata1 = file1.load()
adata2 = file2.load()
import anndata as ad
adata = ad.concat(
[adata1, adata2],
label="file",
keys=[file1.description, file2.description],
)
adata
/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1838: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique`.
utils.warn_names_duplicates("obs")
AnnData object with n_obs × n_vars = 231130 × 10
obs: 'file'
import scanpy as sc
sc.pp.pca(adata)
sc.pl.pca(adata, color=markers.cd14.name)
Register a sharded dataset #
If we believe that we’ll need this dataset, again, we can register a sharded version:
dataset = ln.Dataset([file1, file2], name="Batch 1 and batch 2")
dataset.save()
dataset.view_flow()
# clean up test instance
!lamin delete --force test-flow
!rm -r test-flow
💡 deleting instance testuser1/test-flow
✅ deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-flow.env
✅ instance cache deleted
✅ deleted '.lndb' sqlite file
❗ consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-flow